Corner-sharing
This commit is contained in:
92
corner-sharing/0923_CS.py
Normal file
92
corner-sharing/0923_CS.py
Normal file
@@ -0,0 +1,92 @@
|
|||||||
|
import os
|
||||||
|
import csv
|
||||||
|
from pymatgen.core import Structure
|
||||||
|
from tqdm import tqdm # 引入tqdm来显示进度条,如果未安装请运行 pip install tqdm
|
||||||
|
|
||||||
|
# --- 导入您自定义的分析函数 ---
|
||||||
|
# 假设您的函数存放在 'utils/CS_analyse.py' 文件中
|
||||||
|
# 并且您已经将它们重命名
|
||||||
|
# from calculate_polyhedra_sharing import calculate_polyhedra_sharing as CS_catulate
|
||||||
|
# from check_only_corner_sharing import check_only_corner_sharing
|
||||||
|
# 注意:根据您的描述,您会将函数放在 utils 文件夹中,因此导入方式如下:
|
||||||
|
from utils.CS_analyse import CS_catulate, check_only_corner_sharing
|
||||||
|
|
||||||
|
|
||||||
|
def process_cif_folder(cif_folder_path: str, output_csv_path: str):
|
||||||
|
"""
|
||||||
|
遍历指定文件夹中的所有CIF文件,计算其角共享特性,并将结果输出到CSV文件。
|
||||||
|
|
||||||
|
参数:
|
||||||
|
cif_folder_path (str): 存放CIF文件的文件夹路径。
|
||||||
|
output_csv_path (str): 输出的CSV文件的路径。
|
||||||
|
"""
|
||||||
|
# 检查输入文件夹是否存在
|
||||||
|
if not os.path.isdir(cif_folder_path):
|
||||||
|
print(f"错误: 文件夹 '{cif_folder_path}' 不存在。")
|
||||||
|
return
|
||||||
|
|
||||||
|
# 准备存储结果的列表
|
||||||
|
results = []
|
||||||
|
|
||||||
|
# 获取所有CIF文件的列表
|
||||||
|
try:
|
||||||
|
cif_files = [f for f in os.listdir(cif_folder_path) if f.endswith('.cif')]
|
||||||
|
if not cif_files:
|
||||||
|
print(f"警告: 在文件夹 '{cif_folder_path}' 中没有找到任何 .cif 文件。")
|
||||||
|
return
|
||||||
|
except FileNotFoundError:
|
||||||
|
print(f"错误: 无法访问文件夹 '{cif_folder_path}'。")
|
||||||
|
return
|
||||||
|
|
||||||
|
print(f"开始处理 {len(cif_files)} 个CIF文件...")
|
||||||
|
|
||||||
|
# 使用tqdm创建进度条,遍历所有CIF文件
|
||||||
|
for filename in tqdm(cif_files, desc="Processing CIFs"):
|
||||||
|
file_path = os.path.join(cif_folder_path, filename)
|
||||||
|
|
||||||
|
try:
|
||||||
|
# 1. 从CIF文件加载结构
|
||||||
|
struct = Structure.from_file(file_path)
|
||||||
|
|
||||||
|
# 2. 调用您的 CS_catulate 函数计算详细的共享关系
|
||||||
|
# 这里使用默认参数 sp='Li', anion=['O']
|
||||||
|
sharing_details = CS_catulate(struct, sp='Li', anion=['O','S','Cl','F','Br'])
|
||||||
|
|
||||||
|
# 3. 调用 check_only_corner_sharing 函数进行最终判断
|
||||||
|
is_only_corner = check_only_corner_sharing(sharing_details)
|
||||||
|
|
||||||
|
# 4. 将文件名和结果存入列表
|
||||||
|
results.append([filename, is_only_corner])
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
# 如果处理某个文件时出错,打印错误信息并继续处理下一个文件
|
||||||
|
print(f"\n处理文件 '{filename}' 时发生错误: {e}")
|
||||||
|
results.append([filename, 'Error']) # 在CSV中标记错误
|
||||||
|
|
||||||
|
# 5. 将结果写入CSV文件
|
||||||
|
try:
|
||||||
|
with open(output_csv_path, 'w', newline='', encoding='utf-8') as csvfile:
|
||||||
|
writer = csv.writer(csvfile)
|
||||||
|
# 写入表头
|
||||||
|
writer.writerow(['CIF_File', 'Is_Only_Corner_Sharing'])
|
||||||
|
# 写入所有结果
|
||||||
|
writer.writerows(results)
|
||||||
|
|
||||||
|
print(f"\n处理完成!结果已保存到 '{output_csv_path}'")
|
||||||
|
|
||||||
|
except IOError as e:
|
||||||
|
print(f"\n错误: 无法写入CSV文件 '{output_csv_path}': {e}")
|
||||||
|
|
||||||
|
|
||||||
|
# --- 主程序入口 ---
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# ----- 参数配置 -----
|
||||||
|
# 请将此路径修改为您存放CIF文件的文件夹的实际路径
|
||||||
|
CIF_DIRECTORY = "data/0921"
|
||||||
|
|
||||||
|
# 输出的CSV文件名
|
||||||
|
OUTPUT_CSV = "corner_sharing_results.csv"
|
||||||
|
# -------------------
|
||||||
|
|
||||||
|
# 调用主函数开始处理
|
||||||
|
process_cif_folder(CIF_DIRECTORY, OUTPUT_CSV)
|
||||||
@@ -1,3 +1,5 @@
|
|||||||
|
from typing import List, Dict
|
||||||
|
|
||||||
from pymatgen.core.structure import Structure
|
from pymatgen.core.structure import Structure
|
||||||
from pymatgen.analysis.local_env import VoronoiNN
|
from pymatgen.analysis.local_env import VoronoiNN
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@@ -24,7 +26,132 @@ def special_check_for_3(site, nearest):
|
|||||||
return real_nearest
|
return real_nearest
|
||||||
|
|
||||||
|
|
||||||
def CS_catulate(struct, sp='Li', anion=['O'], tol=0, cutoff=3.0,notice=False,ID=None):
|
def CS_catulate(
|
||||||
|
struct,
|
||||||
|
sp: str = 'Li',
|
||||||
|
anion: List[str] = ['O'],
|
||||||
|
tol: float = 0,
|
||||||
|
cutoff: float = 3.0,
|
||||||
|
notice: bool = False
|
||||||
|
) -> Dict[str, Dict[str, int]]:
|
||||||
|
"""
|
||||||
|
计算结构中不同类型阳离子多面体之间的共享关系(角、边、面共享)。
|
||||||
|
|
||||||
|
该函数会分别计算以下三种情况的共享数量:
|
||||||
|
1. 目标原子 vs 目标原子 (e.g., Li-Li)
|
||||||
|
2. 目标原子 vs 其他阳离子 (e.g., Li-X)
|
||||||
|
3. 其他阳离子 vs 其他阳离子 (e.g., X-Y)
|
||||||
|
|
||||||
|
参数:
|
||||||
|
struct (Structure): 输入的pymatgen结构对象。
|
||||||
|
sp (str): 目标元素符号,默认为 'Li'。
|
||||||
|
anion (list): 阴离子元素符号列表,默认为 ['O']。
|
||||||
|
tol (float): VoronoiNN 的容差。对于Li,通常设为0。
|
||||||
|
cutoff (float): VoronoiNN 的截断距离。对于Li,通常设为3.0。
|
||||||
|
notice (bool): 是否打印详细的共享信息。
|
||||||
|
|
||||||
|
返回:
|
||||||
|
dict: 一个字典,包含三类共享关系的统计结果。
|
||||||
|
键 "sp_vs_sp", "sp_vs_other", "other_vs_other" 分别对应上述三种情况。
|
||||||
|
每个键的值是另一个字典,统计了共享2个(边)、3个(面)等情况的数量。
|
||||||
|
例如: {'sp_vs_sp': {'1': 10, '2': 4}, 'sp_vs_other': ...}
|
||||||
|
共享1个阴离子为角共享,2个为边共享,3个为面共享。
|
||||||
|
"""
|
||||||
|
# 初始化 VoronoiNN 对象
|
||||||
|
voro_nn = VoronoiNN(tol=tol, cutoff=cutoff)
|
||||||
|
|
||||||
|
# 1. 分类存储所有阳离子的近邻阴离子信息
|
||||||
|
target_sites_info = []
|
||||||
|
other_cation_sites_info = []
|
||||||
|
|
||||||
|
for index, site in enumerate(struct.sites):
|
||||||
|
# 跳过阴离子本身
|
||||||
|
if site.species.chemical_system in anion:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# 获取当前位点的近邻阴离子
|
||||||
|
try:
|
||||||
|
# 使用 get_nn_info 更直接
|
||||||
|
nn_info = voro_nn.get_nn_info(struct, index)
|
||||||
|
nearest_anions = [
|
||||||
|
nn["site"] for nn in nn_info
|
||||||
|
if nn["site"].species.chemical_system in anion
|
||||||
|
]
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Warning: Could not get neighbors for site {index} ({site.species_string}): {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
if not nearest_anions:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# 整理信息
|
||||||
|
site_info = {
|
||||||
|
'index': index,
|
||||||
|
'element': site.species.chemical_system,
|
||||||
|
'nearest_anion_indices': {nn.index for nn in nearest_anions}
|
||||||
|
}
|
||||||
|
|
||||||
|
# 根据是否为目标原子进行分类
|
||||||
|
if site.species.chemical_system == sp:
|
||||||
|
target_sites_info.append(site_info)
|
||||||
|
else:
|
||||||
|
other_cation_sites_info.append(site_info)
|
||||||
|
|
||||||
|
# 2. 初始化结果字典
|
||||||
|
# 共享数量key: 1-角, 2-边, 3-面
|
||||||
|
results = {
|
||||||
|
"sp_vs_sp": {"1": 0, "2": 0, "3": 0, "4": 0},
|
||||||
|
"sp_vs_other": {"1": 0, "2": 0, "3": 0, "4": 0},
|
||||||
|
"other_vs_other": {"1": 0, "2": 0, "3": 0, "4": 0},
|
||||||
|
}
|
||||||
|
|
||||||
|
# 3. 计算不同类别之间的共享关系
|
||||||
|
|
||||||
|
# 3.1 目标原子 vs 目标原子 (sp_vs_sp)
|
||||||
|
for i in range(len(target_sites_info)):
|
||||||
|
for j in range(i + 1, len(target_sites_info)):
|
||||||
|
atom_i = target_sites_info[i]
|
||||||
|
atom_j = target_sites_info[j]
|
||||||
|
|
||||||
|
shared_anions = atom_i['nearest_anion_indices'].intersection(atom_j['nearest_anion_indices'])
|
||||||
|
shared_count = len(shared_anions)
|
||||||
|
|
||||||
|
if shared_count > 0 and str(shared_count) in results["sp_vs_sp"]:
|
||||||
|
results["sp_vs_sp"][str(shared_count)] += 1
|
||||||
|
if notice:
|
||||||
|
print(
|
||||||
|
f"[Li-Li] Atom {atom_i['index']} and {atom_j['index']} share {shared_count} anions: {shared_anions}")
|
||||||
|
|
||||||
|
# 3.2 目标原子 vs 其他阳离子 (sp_vs_other)
|
||||||
|
for atom_sp in target_sites_info:
|
||||||
|
for atom_other in other_cation_sites_info:
|
||||||
|
shared_anions = atom_sp['nearest_anion_indices'].intersection(atom_other['nearest_anion_indices'])
|
||||||
|
shared_count = len(shared_anions)
|
||||||
|
|
||||||
|
if shared_count > 0 and str(shared_count) in results["sp_vs_other"]:
|
||||||
|
results["sp_vs_other"][str(shared_count)] += 1
|
||||||
|
if notice:
|
||||||
|
print(
|
||||||
|
f"[Li-Other] Atom {atom_sp['index']} and {atom_other['index']} share {shared_count} anions: {shared_anions}")
|
||||||
|
|
||||||
|
# 3.3 其他阳离子 vs 其他阳离子 (other_vs_other)
|
||||||
|
for i in range(len(other_cation_sites_info)):
|
||||||
|
for j in range(i + 1, len(other_cation_sites_info)):
|
||||||
|
atom_i = other_cation_sites_info[i]
|
||||||
|
atom_j = other_cation_sites_info[j]
|
||||||
|
|
||||||
|
shared_anions = atom_i['nearest_anion_indices'].intersection(atom_j['nearest_anion_indices'])
|
||||||
|
shared_count = len(shared_anions)
|
||||||
|
|
||||||
|
if shared_count > 0 and str(shared_count) in results["other_vs_other"]:
|
||||||
|
results["other_vs_other"][str(shared_count)] += 1
|
||||||
|
if notice:
|
||||||
|
print(
|
||||||
|
f"[Other-Other] Atom {atom_i['index']} and {atom_j['index']} share {shared_count} anions: {shared_anions}")
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
def CS_catulate_old(struct, sp='Li', anion=['O'], tol=0, cutoff=3.0,notice=False,ID=None):
|
||||||
"""
|
"""
|
||||||
计算结构中目标元素与最近阴离子的共享关系。
|
计算结构中目标元素与最近阴离子的共享关系。
|
||||||
|
|
||||||
@@ -51,10 +178,10 @@ def CS_catulate(struct, sp='Li', anion=['O'], tol=0, cutoff=3.0,notice=False,ID=
|
|||||||
# 遍历结构中的每个位点
|
# 遍历结构中的每个位点
|
||||||
for index,site in enumerate(struct.sites):
|
for index,site in enumerate(struct.sites):
|
||||||
# 跳过阴离子位点
|
# 跳过阴离子位点
|
||||||
if site.specie.symbol in anion:
|
if site.species.chemical_system in anion:
|
||||||
continue
|
continue
|
||||||
# 跳过Li原子
|
# 跳过Li原子
|
||||||
if site.specie.symbol == sp:
|
if site.species.chemical_system == sp:
|
||||||
continue
|
continue
|
||||||
# 获取 Voronoi 多面体信息
|
# 获取 Voronoi 多面体信息
|
||||||
voro_info = voro_nn.get_voronoi_polyhedra(struct, index)
|
voro_info = voro_nn.get_voronoi_polyhedra(struct, index)
|
||||||
@@ -62,14 +189,14 @@ def CS_catulate(struct, sp='Li', anion=['O'], tol=0, cutoff=3.0,notice=False,ID=
|
|||||||
# 找到最近的阴离子位点
|
# 找到最近的阴离子位点
|
||||||
nearest_anions = [
|
nearest_anions = [
|
||||||
nn_info["site"] for nn_info in voro_info.values()
|
nn_info["site"] for nn_info in voro_info.values()
|
||||||
if nn_info["site"].specie.symbol in anion
|
if nn_info["site"].species.chemical_system in anion
|
||||||
]
|
]
|
||||||
|
|
||||||
# 如果没有找到最近的阴离子,跳过
|
# 如果没有找到最近的阴离子,跳过
|
||||||
if not nearest_anions:
|
if not nearest_anions:
|
||||||
print(f"No nearest anions found for {ID} site {index}.")
|
print(f"No nearest anions found for {ID} site {index}.")
|
||||||
continue
|
continue
|
||||||
if site.specie.symbol == 'B' or site.specie.symbol == 'N':
|
if site.species.chemical_system == 'B' or site.species.chemical_system == 'N':
|
||||||
nearest_anions = special_check_for_3(site,nearest_anions)
|
nearest_anions = special_check_for_3(site,nearest_anions)
|
||||||
nearest_anions = check_real(nearest_anions)
|
nearest_anions = check_real(nearest_anions)
|
||||||
# 将结果添加到 atom_dice 列表中
|
# 将结果添加到 atom_dice 列表中
|
||||||
@@ -110,10 +237,62 @@ def CS_catulate(struct, sp='Li', anion=['O'], tol=0, cutoff=3.0,notice=False,ID=
|
|||||||
return shared_count
|
return shared_count
|
||||||
|
|
||||||
|
|
||||||
def CS_count(struct, shared_count, sp='Li'):
|
def CS_count(struct, sharing_results: Dict[str, Dict[str, int]], sp: str = 'Li') -> float:
|
||||||
|
"""
|
||||||
|
分析多面体共享结果,计算平均每个目标原子参与的共享阴离子数。
|
||||||
|
|
||||||
|
这个函数是 calculate_polyhedra_sharing 的配套函数。
|
||||||
|
|
||||||
|
参数:
|
||||||
|
struct (Structure): 输入的pymatgen结构对象,用于统计目标原子总数。
|
||||||
|
sharing_results (dict): 来自 calculate_polyhedra_sharing 函数的输出结果。
|
||||||
|
sp (str): 目标元素符号,默认为 'Li'。
|
||||||
|
|
||||||
|
返回:
|
||||||
|
float: 平均每个目标原子sp参与的共享阴离子数量。
|
||||||
|
例如,结果为2.5意味着平均每个Li原子通过共享与其他阳离子
|
||||||
|
(包括Li和其他阳离子)连接了2.5个阴离子。
|
||||||
|
"""
|
||||||
|
# 1. 统计结构中目标原子的总数
|
||||||
|
target_atom_count = 0
|
||||||
|
for site in struct.sites:
|
||||||
|
if site.species.chemical_system == sp:
|
||||||
|
target_atom_count += 1
|
||||||
|
|
||||||
|
# 如果结构中没有目标原子,直接返回0,避免除以零错误
|
||||||
|
if target_atom_count == 0:
|
||||||
|
return 0.0
|
||||||
|
|
||||||
|
# 2. 计算加权的共享阴离子总数
|
||||||
|
total_shared_anions = 0
|
||||||
|
|
||||||
|
# 处理 sp_vs_sp (例如 Li-Li) 的共享
|
||||||
|
# 每个共享关系涉及两个目标原子,所以权重需要乘以 2
|
||||||
|
if "sp_vs_sp" in sharing_results:
|
||||||
|
sp_vs_sp_counts = sharing_results["sp_vs_sp"]
|
||||||
|
for num_shared_str, count in sp_vs_sp_counts.items():
|
||||||
|
num_shared = int(num_shared_str)
|
||||||
|
# 权重 = 共享阴离子数 * 涉及的目标原子数 (2) * 出现次数
|
||||||
|
total_shared_anions += num_shared * 2 * count
|
||||||
|
|
||||||
|
# 处理 sp_vs_other (例如 Li-X) 的共享
|
||||||
|
# 每个共享关系涉及一个目标原子,所以权重乘以 1
|
||||||
|
if "sp_vs_other" in sharing_results:
|
||||||
|
sp_vs_other_counts = sharing_results["sp_vs_other"]
|
||||||
|
for num_shared_str, count in sp_vs_other_counts.items():
|
||||||
|
num_shared = int(num_shared_str)
|
||||||
|
# 权重 = 共享阴离子数 * 涉及的目标原子数 (1) * 出现次数
|
||||||
|
total_shared_anions += num_shared * 1 * count
|
||||||
|
|
||||||
|
# 3. 计算平均值
|
||||||
|
# 平均每个目标原子参与的共享阴离子数 = 总的加权共享数 / 目标原子总数
|
||||||
|
average_sharing_per_atom = total_shared_anions / target_atom_count
|
||||||
|
|
||||||
|
return average_sharing_per_atom
|
||||||
|
def CS_count_old(struct, shared_count, sp='Li'):
|
||||||
count = 0
|
count = 0
|
||||||
for site in struct.sites:
|
for site in struct.sites:
|
||||||
if site.specie.symbol == sp:
|
if site.species.chemical_system == sp:
|
||||||
count += 1 # 累加符合条件的原子数量
|
count += 1 # 累加符合条件的原子数量
|
||||||
|
|
||||||
CS_count = 0
|
CS_count = 0
|
||||||
@@ -128,7 +307,50 @@ def CS_count(struct, shared_count, sp='Li'):
|
|||||||
|
|
||||||
return CS_count
|
return CS_count
|
||||||
|
|
||||||
structure = Structure.from_file("../data/0921/wjy_001.cif")
|
|
||||||
a = CS_catulate(structure,notice=True)
|
def check_only_corner_sharing(sharing_results: Dict[str, Dict[str, int]]) -> int:
|
||||||
b = CS_count(structure,a)
|
"""
|
||||||
print(f"{a}\n{b}")
|
检查目标原子(sp)是否只参与了角共享(共享1个阴离子)。
|
||||||
|
|
||||||
|
该函数是 calculate_polyhedra_sharing 的配套函数。
|
||||||
|
|
||||||
|
参数:
|
||||||
|
sharing_results (dict): 来自 calculate_polyhedra_sharing 函数的输出结果。
|
||||||
|
|
||||||
|
返回:
|
||||||
|
int:
|
||||||
|
- 1: 如果 sp 的共享关系中,边共享(2)、面共享(3)等数量均为0,
|
||||||
|
并且至少存在一个角共享(1)。
|
||||||
|
- 0: 如果 sp 存在任何边、面等共享,或者没有任何共享关系。
|
||||||
|
"""
|
||||||
|
# 提取与目标原子 sp 相关的共享数据
|
||||||
|
sp_vs_sp_counts = sharing_results.get("sp_vs_sp", {})
|
||||||
|
sp_vs_other_counts = sharing_results.get("sp_vs_other", {})
|
||||||
|
|
||||||
|
# 1. 检查是否存在任何边共享、面共享等 (共享数 > 1)
|
||||||
|
# 检查 sp-sp 的共享
|
||||||
|
for num_shared_str, count in sp_vs_sp_counts.items():
|
||||||
|
if int(num_shared_str) > 1 and count > 0:
|
||||||
|
return 0 # 发现了边/面共享,立即返回 0
|
||||||
|
|
||||||
|
# 检查 sp-other 的共享
|
||||||
|
for num_shared_str, count in sp_vs_other_counts.items():
|
||||||
|
if int(num_shared_str) > 1 and count > 0:
|
||||||
|
return 0 # 发现了边/面共享,立即返回 0
|
||||||
|
|
||||||
|
# 2. 检查是否存在至少一个角共享 (共享数 == 1)
|
||||||
|
# 运行到这里,说明已经没有任何边/面共享了。
|
||||||
|
# 现在需要确认是否真的存在角共享,而不是完全没有共享。
|
||||||
|
corner_share_sp_sp = sp_vs_sp_counts.get("1", 0) > 0
|
||||||
|
corner_share_sp_other = sp_vs_other_counts.get("1", 0) > 0
|
||||||
|
|
||||||
|
if corner_share_sp_sp or corner_share_sp_other:
|
||||||
|
return 1 # 确认只存在角共享
|
||||||
|
else:
|
||||||
|
return 0 # 没有任何共享关系,也返回 0
|
||||||
|
|
||||||
|
# structure = Structure.from_file("../data/0921/wjy_001.cif")
|
||||||
|
# a = CS_catulate(structure,notice=True)
|
||||||
|
# b = CS_count(structure,a)
|
||||||
|
# print(f"{a}\n{b}")
|
||||||
|
# print(check_only_corner_sharing(a))
|
||||||
Reference in New Issue
Block a user