nep框架搭建

This commit is contained in:
2025-12-08 17:48:03 +08:00
parent 0b6537a810
commit 5057d18e98
5 changed files with 232 additions and 48 deletions

53
config/machine.yaml Normal file
View File

@@ -0,0 +1,53 @@
# config/machine.yaml
# 当前使用的计算系统配置名
current_system: "interactive_gpu"
systems:
# --- 配置 1: 交互式 GPU 环境 (当前使用) ---
# 场景: 你已经用 srun/tmux 申请到了资源,直接运行命令即可
interactive_gpu:
type: "local" # local 表示直接运行 subprocess不提交 sbatch
# 路径配置
gpumdkit_root: "/cluster/home/koko125/tool/GPUMDkit"
tools:
# 1. GPUMD 配置
gpumd:
command: "gpumd"
# 运行前需要 source 的环境脚本
env_setup: ""
gpu_id: 0
# 2. NEP 配置 (同上)
nep:
command: "nep"
env_setup: ""
gpu_id: 0
# 3. VASP (GPU 版) 配置
vasp:
# 假设是 GPU 版本,可能不需要 mpirun 或者只需要少量核
command: "mpirun -np 1 vasp_std"
env_setup: ""
# 即使是 local 模式,有时也需要指定并行度
n_procs: 1
# --- 配置 2: VASP CPU 集群模式 (预留,未来使用) ---
# 场景: 需要生成 submit.slurm 并 sbatch 提交
slurm_cpu_cluster:
type: "slurm"
gpumdkit_root: "/cluster/home/koko125/tool/GPUMDkit"
tools:
vasp:
command: "mpirun -np 4 vasp_std"
env_setup: "module load vasp/6.3-cpu"
# Slurm 头部参数
slurm_header:
partition: "cpu_long"
ntasks_per_node: 64
time: "24:00:00"

View File

@@ -1,70 +1,46 @@
# config/param.yaml
# --- 1. 环境与路径配置 ---
env:
# 可执行文件绝对路径
vasp_std: "mpirun -np 1 /cluster/home/koko125/vasp/bin_gpu/vasp_std"
gpumd: "/cluster/home/koko125/tool/GPUMD/src/gpumd"
nep: "/cluster/home/koko125/tool/GPUMD/src/nep"
# GPUMDKit 脚本库根目录
gpumdkit_root: "/cluster/home/koko125/tool/GPUMDkit"
# 【修改点】HPC 作业提交配置 (用于填充 submit.slurm 模板)
# 这些变量会被自动替换到 .sh 脚本头部
# slurm_config:
# partition: "v100" # 队列分区名
# account: "def-user" # 账户名 (如果有)
# gpu_per_node: 1 # 每节点 GPU 数
# ntasks_per_node: 32 # 每节点 CPU 核数
# time_limit: "24:00:00" # 墙钟时间限制
# --- 2. 流程控制 ---
# 阶段代号定义 (对应 modules 下的 Python 文件)
# --- 1. 流程控制 ---
stages_def:
p: "preheat" # 00.md/preheat
m: "md" # 00.md/md
s: "select" # 01.select
d: "scf" # 02.scf
t: "train" # 03.train
pr: "predict" # 04.predict (新增:用于性质预测)
o: "output" # 05.output (始终默认执行:整理报告)
p: "preheat"
m: "md"
s: "select"
d: "scf"
t: "train"
pr: "predict"
o: "output"
# 自定义流程调度
# 注意:'o' (output) 不需要显式写在这里,代码逻辑会强制每轮最后执行它
schedule:
# 第1轮: 跑完训练,不做预测,看一眼结果
1: ["p", "m", "s", "d", "t"]
# 第2轮: 跑完训练,加入预测步骤 (计算电导/扩散等)
2: ["p", "m", "s", "d", "t", "pr"]
# 默认流程 (如果没有定义轮次)
# 默认流程
default_workflow: ["p", "m", "s", "d", "t", "pr"]
# --- 3. 容错与通知 ---
# 自定义调度
schedule:
1: ["p", "m", "s", "d", "t", "o"]
# --- 2. 容错与通知 ---
control:
max_retries: 3 # 任务失败自动重启次数
check_interval: 60 # 状态检查间隔 (秒)
max_retries: 3
check_interval: 60
notification:
enable_log: true
log_file: "./logs/sys_runtime.log"
enable_hook: true
hook_script: "python ./hooks/send_alert.py"
alert_events: ["fail", "finish"]
# --- 4. 模块参数 ---
# --- 3. 模块具体的物理/算法参数 ---
params:
preheat:
temp: 300
steps: 10000
# 这里不需要指定 gpumd 路径,只需要指定物理量
select:
target_min: 60
target_max: 120
init_threshold: 0.01
predict:
# 预测阶段需要的参数,比如计算电导率的温度范围
temperatures: [300, 400, 500]
script_path: "scripts/calc_conductivity.py" # 具体的计算脚本
scf:
# 比如指定用 machine.yaml 里的哪个 tool 配置
tool_key: "vasp"

View File

@@ -10,10 +10,14 @@ class NEPDriver:
self.logger = logging.getLogger("NEP_Auto")
self.root = Path(".")
# 1. 加载配置
# 1. 加载所有配置
self.config_sys = self._load_yaml("config/system.yaml")
self.config_param = self._load_yaml("config/param.yaml")
# 【新增】加载 machine 配置
self.config_machine = self._load_yaml("config/machine.yaml")
self.logger.info(f"项目名称: {self.config_sys.get('project_name')}")
self.logger.info(f"计算环境: {self.config_machine.get('current_system')}")
# 2. 初始化状态管理器
self.status = StatusManager(self.root / "workspace")

View File

@@ -0,0 +1,77 @@
import os
import shutil
import logging
from pathlib import Path
from nep_auto.utils.runner import CommandRunner
class BaseModule:
def __init__(self, driver, iter_id):
"""
:param driver: NEPDriver 实例,包含所有配置
:param iter_id: 当前轮次 (int)
"""
self.driver = driver
self.config_sys = driver.config_sys
self.config_param = driver.config_param
self.machine_config = driver.config_machine['systems'][driver.config_machine['current_system']]
self.iter_id = iter_id
self.iter_name = f"iter_{iter_id:03d}"
self.logger = logging.getLogger("NEP_Auto")
# 初始化运行器
self.runner = CommandRunner(self.machine_config)
# 定义路径
self.root = Path(driver.root) / "workspace"
self.iter_dir = self.root / self.iter_name
self.output_dir = self.iter_dir / "05.output" # 公共输出区
def get_work_dir(self):
"""需由子类实现:返回当前模块的具体工作目录"""
raise NotImplementedError
def initialize(self):
"""通用初始化:创建目录,复制通用文件"""
work_dir = self.get_work_dir()
if not work_dir.exists():
work_dir.mkdir(parents=True, exist_ok=True)
self.logger.debug(f"📁 Created dir: {work_dir}")
# 确保公共输出目录存在
if not self.output_dir.exists():
self.output_dir.mkdir(parents=True, exist_ok=True)
def run(self):
"""核心逻辑入口,子类必须实现"""
raise NotImplementedError
def check_done(self):
"""检查任务是否完成,子类必须实现"""
raise NotImplementedError
# --- 通用工具方法 ---
def copy_template(self, template_name, target_name=None):
"""从 template 目录复制文件"""
if target_name is None:
target_name = template_name
# 根据模块类型寻找模板目录 (需要在子类定义 self.template_subdir)
src = Path("template") / getattr(self, "template_subdir", "common") / template_name
dst = self.get_work_dir() / target_name
if src.exists():
shutil.copy(src, dst)
# self.logger.debug(f"📄 Copied {template_name} -> {dst}")
else:
self.logger.warning(f"⚠️ Template not found: {src}")
def link_file(self, src_path, dst_name):
"""创建软链接"""
src = Path(src_path).resolve()
dst = self.get_work_dir() / dst_name
if dst.exists():
dst.unlink()
os.symlink(src, dst)

View File

@@ -0,0 +1,74 @@
import subprocess
import os
import time
import logging
class CommandRunner:
def __init__(self, machine_config):
"""
:param machine_config: config/machine.yaml 中 'systems' -> 'current_system' 对应的内容
"""
self.config = machine_config
self.logger = logging.getLogger("NEP_Auto")
self.mode = self.config.get("type", "local") # local 或 slurm
def run(self, tool_name, cwd=".", wait=True, extra_args=""):
"""
核心运行方法
:param tool_name: machine.yaml 中 tools 下的键名 (如 'gpumd', 'vasp')
:param cwd: 执行命令的工作目录
:param wait: 是否等待命令结束 (True: 阻塞, False: 后台运行)
:param extra_args: 附加在命令后的参数
"""
# 1. 获取工具配置
tool_conf = self.config.get("tools", {}).get(tool_name)
if not tool_conf:
self.logger.error(f"❌ 找不到工具配置: {tool_name}")
raise ValueError(f"Tool {tool_name} not defined in machine.yaml")
cmd = tool_conf.get("command")
env_setup = tool_conf.get("env_setup", "")
# 2. 组装命令 (Local 模式)
if self.mode == "local":
full_cmd = f"{cmd} {extra_args}"
# 如果有环境加载脚本,用 && 连接
if env_setup:
full_cmd = f"{env_setup} && {full_cmd}"
self.logger.info(f"⚙️ [Local] Executing: {full_cmd}")
self.logger.info(f" 📂 Workdir: {cwd}")
try:
# 使用 bash 执行以支持 source 命令
process = subprocess.Popen(
full_cmd,
shell=True,
cwd=cwd,
executable="/bin/bash",
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
if wait:
stdout, stderr = process.communicate()
if process.returncode != 0:
self.logger.error(f"❌ Execution failed (Code {process.returncode})")
self.logger.error(f"Stderr: {stderr}")
raise RuntimeError(f"Command failed: {full_cmd}")
return True
else:
return process # 返回进程对象供监控
except Exception as e:
self.logger.error(f"❌ Runner Error: {str(e)}")
raise
# 3. Slurm 模式 (预留接口,暂未实现具体逻辑)
elif self.mode == "slurm":
self.logger.warning("⚠️ Slurm mode not fully implemented yet.")
# 这里未来会生成 sbatch 脚本并提交
return False