nep框架搭建

This commit is contained in:
2025-12-08 22:34:02 +08:00
parent cba2afb403
commit 19a6924a41
3 changed files with 246 additions and 115 deletions

View File

@@ -1,5 +1,5 @@
import shutil import shutil
import re import subprocess
from pathlib import Path from pathlib import Path
from nep_auto.modules.base_module import BaseModule from nep_auto.modules.base_module import BaseModule
@@ -14,14 +14,16 @@ class SelectModule(BaseModule):
return self.work_dir return self.work_dir
def get_frame_count(self, xyz_file): def get_frame_count(self, xyz_file):
"""读取 xyz 文件帧数 (简单通过 grep 'Lattice' 计数,或用 ASE)""" """读取 xyz 文件帧数 (通过 grep 'Lattice' 计数)"""
if not xyz_file.exists(): if not xyz_file.exists():
return 0 return 0
# 简单方法:读取文件统计 Lattice 出现的次数 (ExtXYZ 格式)
try: try:
with open(xyz_file, 'r') as f: # 使用 grep -c 更快,避免 python 读取大文件内存溢出
content = f.read() result = subprocess.run(
return content.count("Lattice=") f"grep -c 'Lattice' {xyz_file}",
shell=True, stdout=subprocess.PIPE, text=True
)
return int(result.stdout.strip())
except: except:
return 0 return 0
@@ -29,73 +31,114 @@ class SelectModule(BaseModule):
self.logger.info(f"🔍 [Select] Starting Active Learning Selection Iter {self.iter_id}...") self.logger.info(f"🔍 [Select] Starting Active Learning Selection Iter {self.iter_id}...")
self.initialize() self.initialize()
# 准备数据 # ----------------------------------------
# 1. 准备必要文件
# ----------------------------------------
# A. 待筛选数据 (从 MD 结果拿)
src_dump = self.md_dir / "dump.xyz" src_dump = self.md_dir / "dump.xyz"
train_xyz_prev = self.root / "00.data" / "train.xyz" # 或者是上一轮的 train if not src_dump.exists():
# 如果是 iter > 1train.xyz 应该是累积的。这里简化,先假设有一个参考的 train.xyz raise FileNotFoundError(f"MD dump missing: {src_dump}")
# 必须文件dump.xyz, train.xyz, nep.txt
shutil.copy(src_dump, self.work_dir / "dump.xyz") shutil.copy(src_dump, self.work_dir / "dump.xyz")
# 这里的 train.xyz 是给 neptrain_select_structs.py 用作参考的 # B. 势函数 (从 MD 结果拿)
if self.iter_id == 1:
# 第一轮可以用 data 里的初始文件,或者做一个空的
pass
else:
# 复制上一轮的 train.xyz
pass
# 复制 nep.txt
shutil.copy(self.md_dir / "nep.txt", self.work_dir / "nep.txt") shutil.copy(self.md_dir / "nep.txt", self.work_dir / "nep.txt")
# 读取参数 # C. 历史训练集 (用于对比)
# 逻辑:如果是第一轮,我们需要一个初始的 train.xyz (即使是空的或者是 model.xyz)
# gpumdkit 需要这个文件存在
target_train_xyz = self.work_dir / "train.xyz"
if self.iter_id == 1:
# 尝试从 data 目录拿初始训练集,如果没有,可以用 model.xyz 充数
init_train = self.root / "00.data" / "train.xyz"
if init_train.exists():
shutil.copy(init_train, target_train_xyz)
else:
# 如果实在没有,把初始结构当做 train.xyz避免脚本报错
self.logger.warning("No initial train.xyz found, using model.xyz as placeholder.")
shutil.copy(self.md_dir / "model.xyz", target_train_xyz)
else:
# 使用上一轮累积的训练集
prev_train = self.root / f"iter_{self.iter_id - 1:03d}" / "03.train" / "train.xyz"
if prev_train.exists():
shutil.copy(prev_train, target_train_xyz)
else:
raise FileNotFoundError(f"Previous train.xyz missing: {prev_train}")
# ----------------------------------------
# 2. 循环筛选 (调整阈值)
# ----------------------------------------
cfg = self.config_param['params']['select'] cfg = self.config_param['params']['select']
target_min = cfg.get('target_min', 60) target_min = cfg.get('target_min', 60)
target_max = cfg.get('target_max', 120) target_max = cfg.get('target_max', 120)
threshold = cfg.get('init_threshold', 0.01) threshold = cfg.get('init_threshold', 0.01)
kit_root = self.driver.config_param['env']['gpumdkit_root']
script = f"{kit_root}/Scripts/sample_structures/neptrain_select_structs.py"
# 循环筛选
max_attempts = 10 max_attempts = 10
attempt = 0 attempt = 0
# gpumdkit 命令 (假设 machine.yaml 里配好了 tool 叫 'gpumdkit')
# 如果是 local 模式runner.run 实际上是执行 command。
# 但这里我们需要特殊的 input piperunner 的通用接口可能不够用。
# 既然我们明确是 local 环境且用 pipe直接用 subprocess 最稳。
gpumdkit_cmd = self.machine_config['tools']['gpumdkit']['command'] # e.g. "gpumdkit.sh"
while attempt < max_attempts: while attempt < max_attempts:
self.logger.info(f" -> Attempt {attempt + 1}: Threshold = {threshold}") self.logger.info(f" -> Attempt {attempt + 1}: Threshold = {threshold:.5f}")
# 构造命令: python script dump.xyz train.xyz nep.txt [options] # 构造输入流字符串
# 注意:如果你的脚本不支持命令行传参阈值,需要修改脚本或用 sed 修改 # 对应你的流程: 203 -> file names -> 1 (distance mode) -> threshold
# 假设脚本已经被修改支持 --distance {threshold},或者我们用一种 hack 方式 input_str = f"203\ndump.xyz train.xyz nep.txt\n1\n{threshold}\n"
# 既然原流程是交互式的,这里强烈建议你修改 neptrain_select_structs.py
# 让它支持命令行参数parser.add_argument('--distance', ...)
cmd_args = f"{script} dump.xyz train.xyz nep.txt --distance {threshold} --auto_confirm" # 构造完整命令: echo -e "..." | gpumdkit.sh
# 注意python 的 input 参数直接传给 stdin不需要用 echo |
try: try:
self.runner.run("python_script", cwd=self.work_dir, extra_args=cmd_args) self.logger.debug(f" Input string: {repr(input_str)}")
except Exception as e:
self.logger.warning(f"Select script warning: {e}")
# 检查结果 process = subprocess.run(
gpumdkit_cmd,
input=input_str,
cwd=self.work_dir,
shell=True,
executable="/bin/bash",
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
# 记录输出以便 debug
# self.logger.debug(process.stdout)
if process.returncode != 0:
self.logger.error(f"gpumdkit execution failed: {process.stderr}")
raise RuntimeError("gpumdkit failed")
except Exception as e:
self.logger.error(f"Execution error: {e}")
raise
# 检查 selected.xyz
selected_file = self.work_dir / "selected.xyz" selected_file = self.work_dir / "selected.xyz"
count = self.get_frame_count(selected_file) count = self.get_frame_count(selected_file)
self.logger.info(f" -> Selected {count} structures.") self.logger.info(f" -> Selected {count} structures.")
if target_min <= count <= target_max: if target_min <= count <= target_max:
self.logger.info("✅ Selection criteria met!") self.logger.info(f"✅ Selection success! ({count} frames)")
break break
elif count < target_min: elif count < target_min:
self.logger.info(" -> Too few, lowering threshold (-0.01)...") self.logger.info(" -> Too few, lowering threshold (x0.8)...")
threshold = threshold - 0.01 threshold *= 0.8
else: else:
self.logger.info(" -> Too many, raising threshold (+0.01)...") self.logger.info(" -> Too many, raising threshold (x1.2)...")
threshold = threshold + 0.01 threshold *= 1.2
# 稍微清理一下生成的中间文件,防止下次干扰?
# selected.xyz 会被下次覆盖,所以不删也行。
attempt += 1 attempt += 1
if attempt >= max_attempts: if attempt >= max_attempts:
self.logger.warning("⚠️ Max attempts reached in selection. Proceeding with current best.") self.logger.warning("⚠️ Max attempts reached. Proceeding with current best.")
self.check_done() self.check_done()

View File

@@ -1,6 +1,7 @@
import shutil import shutil
import subprocess
import glob
from pathlib import Path from pathlib import Path
from ase.io import read, write
from nep_auto.modules.base_module import BaseModule from nep_auto.modules.base_module import BaseModule
@@ -18,70 +19,145 @@ class SCFModule(BaseModule):
self.logger.info(f"⚛️ [SCF] Starting DFT Calculation Iter {self.iter_id}...") self.logger.info(f"⚛️ [SCF] Starting DFT Calculation Iter {self.iter_id}...")
self.initialize() self.initialize()
# 1. 读取 selected.xyz # ----------------------------------------
selected_xyz = self.select_dir / "selected.xyz" # 1. 准备数据: selected.xyz -> 301 切分
if not selected_xyz.exists(): # ----------------------------------------
raise FileNotFoundError("selected.xyz missing") src_xyz = self.select_dir / "selected.xyz"
if not src_xyz.exists():
raise FileNotFoundError("selected.xyz missing from select module")
self.logger.info(" -> Reading structures using ASE...") shutil.copy(src_xyz, self.work_dir / "selected.xyz")
atoms_list = read(selected_xyz, index=':')
self.logger.info(f" -> Found {len(atoms_list)} structures.")
# 2. 准备任务文件夹 # 调用 gpumdkit.sh (301 -> prefix)
task_dirs = [] # Prefix 使用 "task" 或者 "job",生成 job_1, job_2...
for i, atoms in enumerate(atoms_list): prefix = "task"
task_name = f"task.{i:03d}" input_str = f"301\n{prefix}\n"
task_dir = self.work_dir / task_name
task_dir.mkdir(exist_ok=True)
task_dirs.append(task_dir)
# 写 POSCAR gpumdkit_cmd = self.machine_config['tools']['gpumdkit']['command']
write(task_dir / "POSCAR", atoms, format='vasp')
# 复制模版 INCAR, KPOINTS, POTCAR self.logger.info(" -> Splitting structures using gpumdkit...")
self.copy_template("INCAR", target_name=None) # 复制到 self.work_dir try:
shutil.copy(self.work_dir / "INCAR", task_dir / "INCAR") # 再分发 subprocess.run(
self.copy_template("KPOINTS", target_name=None) gpumdkit_cmd,
shutil.copy(self.work_dir / "KPOINTS", task_dir / "KPOINTS") input=input_str,
self.copy_template("POTCAR", target_name=None) cwd=self.work_dir,
shutil.copy(self.work_dir / "POTCAR", task_dir / "POTCAR") shell=True,
executable="/bin/bash",
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
check=True
)
except subprocess.CalledProcessError as e:
self.logger.error(f"gpumdkit splitting failed: {e.stderr}")
raise
# 3. 提交任务 # ----------------------------------------
# 这里区分 local 模式和 slurm 模式 # 2. 准备 DFT 输入文件 (fp 文件夹)
# 既然你目前是 interactive gpu我们假设是串行或者简单的并行 # ----------------------------------------
# gpumdkit 会生成一个 fp 文件夹,我们需要把模版放进去
fp_dir = self.work_dir / "fp"
if not fp_dir.exists():
# 某些版本的脚本可能不自动创建 fp手动建一个保险
fp_dir.mkdir(exist_ok=True)
self.logger.info(" -> preparing INCAR/KPOINTS/POTCAR...")
# 从 template/02_scf 复制到 02.scf/fp
self.copy_template("INCAR", target_name=None)
shutil.copy(self.work_dir / "INCAR", fp_dir / "INCAR")
self.copy_template("KPOINTS", target_name=None)
shutil.copy(self.work_dir / "KPOINTS", fp_dir / "KPOINTS")
self.copy_template("POTCAR", target_name=None)
shutil.copy(self.work_dir / "POTCAR", fp_dir / "POTCAR")
# ----------------------------------------
# 3. 分发文件并提交任务
# ----------------------------------------
# 找到所有生成的文件夹 (task_1, task_2...)
task_dirs = sorted(list(self.work_dir.glob(f"{prefix}_*")))
if not task_dirs:
raise RuntimeError(f"No {prefix}_* folders generated!")
self.logger.info(f" -> Found {len(task_dirs)} tasks. Distributing input files...")
# 将 fp 里的文件分发到每个 task 文件夹 (替代 presub.sh 的功能)
common_files = ["INCAR", "KPOINTS", "POTCAR"]
for t_dir in task_dirs:
if not t_dir.is_dir(): continue
for f in common_files:
shutil.copy(fp_dir / f, t_dir / f)
# 提交计算
self.logger.info(" -> Running VASP jobs...") self.logger.info(" -> Running VASP jobs...")
success_count = 0 success_count = 0
for task_dir in task_dirs:
self.logger.info(f" -> Running {task_dir.name}...")
try:
# 调用 machine.yaml 里定义的 vasp
# 注意:如果 task 很多,这里最好写成多进程并发
self.runner.run("vasp", cwd=task_dir)
# 简单检查 # 这里的并行策略取决于 machine.yaml
if (task_dir / "OUTCAR").exists(): # 如果是 Interactive GPU我们通常是串行跑或者一次跑 N 个
# 这里先简单实现串行跑
for t_dir in task_dirs:
self.logger.info(f" -> Running {t_dir.name}...")
try:
# 调用 machine.yaml 里的 vasp 工具
self.runner.run("vasp", cwd=t_dir)
if (t_dir / "OUTCAR").exists(): # 简单判据
success_count += 1 success_count += 1
except Exception as e: except Exception as e:
self.logger.error(f"Task {task_dir.name} failed: {e}") self.logger.error(f"Job {t_dir.name} failed: {e}")
self.logger.info(f" -> Finished. Success: {success_count}/{len(task_dirs)}") self.logger.info(f" -> Finished. Success: {success_count}/{len(task_dirs)}")
# 4. 收集数据 (OUTCAR -> NEP-dataset.xyz) # ----------------------------------------
self.logger.info(" -> Collecting data...") # 4. 收集结果 (OUTCARs -> NEP-dataset.xyz)
valid_atoms = [] # ----------------------------------------
for task_dir in task_dirs: # 使用 gpumdkit 104 功能: Format Conversion -> OUTCAR to xyz (需提供路径)
try: # 或者 108? 根据你的描述是 gpumdkit.sh -out2xyz .
# 读取 OUTCAR
atoms = read(task_dir / "OUTCAR", format='vasp-outcar') self.logger.info(" -> Converting OUTCARs to NEP-dataset.xyz...")
valid_atoms.append(atoms)
except: # 方式 A: 命令行参数调用 (如果你确认支持)
# cmd = f"{gpumdkit_cmd} -out2xyz ."
# 方式 B: 交互式调用 (104/108) - 这里假设 -out2xyz 可用,这是最方便的
# 如果不支持,我们需要知道交互式的代码。根据你的描述 7: "-out2xyz ."
try:
# 尝试直接调用 -out2xyz
subprocess.run(
f"{gpumdkit_cmd} -out2xyz .",
cwd=self.work_dir,
shell=True,
executable="/bin/bash",
check=True
)
# gpumdkit 通常生成 model.xyz 或 out.xyz我们需要重命名为 NEP-dataset.xyz
# 假设生成的是 model.xyz
potential_outputs = ["model.xyz", "movie.xyz", "out.xyz"]
found = False
for f in potential_outputs:
if (self.work_dir / f).exists():
shutil.move(self.work_dir / f, self.work_dir / "NEP-dataset.xyz")
found = True
break
if not found and not (self.work_dir / "NEP-dataset.xyz").exists():
# 如果没找到,可能已经在子文件夹里?
pass pass
if valid_atoms: except subprocess.CalledProcessError:
write(self.work_dir / "NEP-dataset.xyz", valid_atoms, format='extxyz') self.logger.warning("gpumdkit -out2xyz failed, falling back to ASE...")
else: # Fallback: 使用 ASE 收集 (更稳健)
raise RuntimeError("No valid OUTCARs found!") from ase.io import read, write
all_atoms = []
for t_dir in task_dirs:
try:
all_atoms.append(read(t_dir / "OUTCAR", format="vasp-outcar"))
except:
pass
if all_atoms:
write(self.work_dir / "NEP-dataset.xyz", all_atoms, format="extxyz")
self.check_done() self.check_done()

View File

@@ -1,4 +1,5 @@
import shutil import shutil
from pathlib import Path
from nep_auto.modules.base_module import BaseModule from nep_auto.modules.base_module import BaseModule
@@ -15,42 +16,53 @@ class TrainModule(BaseModule):
self.logger.info(f"🧠 [Train] Starting Training Iter {self.iter_id}...") self.logger.info(f"🧠 [Train] Starting Training Iter {self.iter_id}...")
self.initialize() self.initialize()
# 1. 准备 train.xyz # ----------------------------------------
# 逻辑:当前 train.xyz = 上一轮 train.xyz + 本轮 scf/NEP-dataset.xyz # 1. 准备 train.xyz (合并)
current_train_xyz = self.work_dir / "train.xyz" # ----------------------------------------
# 目标文件
current_train = self.work_dir / "train.xyz"
# 打开输出文件 # 来源 1: 上一轮的 train.xyz (如果是第一轮,找初始数据)
with open(current_train_xyz, 'wb') as outfile: sources = []
# A. 写入上一轮数据 (或初始数据) if self.iter_id == 1:
if self.iter_id == 1: init_data = self.root / "00.data" / "train.xyz"
# 第一轮,看是否有初始训练集,如果没有则只用本轮的 SCF 数据 if init_data.exists():
# 这里假设 iter_000 是个虚拟的,或者直接去 00.data 里找 sources.append(init_data)
init_data = self.root / "00.data" / "train.xyz" # 预留位置 else:
pass prev_train = self.root / f"iter_{self.iter_id - 1:03d}" / "03.train" / "train.xyz"
else: if prev_train.exists():
prev_train = self.root / f"iter_{self.iter_id - 1:03d}" / "03.train" / "train.xyz" sources.append(prev_train)
if prev_train.exists():
with open(prev_train, 'rb') as infile:
shutil.copyfileobj(infile, outfile)
# B. 写入本轮新数据 # 来源 2: 本轮新算的 SCF 数据
new_data = self.iter_dir / "02.scf" / "NEP-dataset.xyz" new_data = self.iter_dir / "02.scf" / "NEP-dataset.xyz"
if new_data.exists(): if new_data.exists():
with open(new_data, 'rb') as infile: sources.append(new_data)
else:
raise FileNotFoundError("New training data (NEP-dataset.xyz) missing!")
# 执行合并
self.logger.info(f" -> Merging {len(sources)} datasets into train.xyz...")
with open(current_train, 'wb') as outfile:
for src in sources:
with open(src, 'rb') as infile:
shutil.copyfileobj(infile, outfile) shutil.copyfileobj(infile, outfile)
else:
raise FileNotFoundError("New training data (NEP-dataset.xyz) missing!")
# ----------------------------------------
# 2. 准备 nep.in # 2. 准备 nep.in
# ----------------------------------------
self.copy_template("nep.in") self.copy_template("nep.in")
# 3. 运行训练 # ----------------------------------------
# 3. 运行训练 (调用 machine.yaml 里的 nep)
# ----------------------------------------
self.logger.info(" -> Running NEP training...") self.logger.info(" -> Running NEP training...")
self.runner.run("nep", cwd=self.work_dir) self.runner.run("nep", cwd=self.work_dir)
self.check_done() self.check_done()
def check_done(self): def check_done(self):
# 检查是否生成了 nep.txt
# 通常还会检查 loss.out 是否收敛,或者生成了 virials.out 等
if (self.work_dir / "nep.txt").exists(): if (self.work_dir / "nep.txt").exists():
self.logger.info("✅ Training finished.") self.logger.info("✅ Training finished.")
return True return True