69 lines
2.5 KiB
Python
69 lines
2.5 KiB
Python
import shutil
|
|
from pathlib import Path
|
|
from nep_auto.modules.base_module import BaseModule
|
|
|
|
|
|
class TrainModule(BaseModule):
|
|
def __init__(self, driver, iter_id):
|
|
super().__init__(driver, iter_id)
|
|
self.template_subdir = "03_train"
|
|
self.work_dir = self.iter_dir / "03.train"
|
|
|
|
def get_work_dir(self):
|
|
return self.work_dir
|
|
|
|
def run(self):
|
|
self.logger.info(f"🧠 [Train] Starting Training Iter {self.iter_id}...")
|
|
self.initialize()
|
|
|
|
# ----------------------------------------
|
|
# 1. 准备 train.xyz (合并)
|
|
# ----------------------------------------
|
|
# 目标文件
|
|
current_train = self.work_dir / "train.xyz"
|
|
|
|
# 来源 1: 上一轮的 train.xyz (如果是第一轮,找初始数据)
|
|
sources = []
|
|
if self.iter_id == 1:
|
|
init_data = self.root / "00.data" / "train.xyz"
|
|
if init_data.exists():
|
|
sources.append(init_data)
|
|
else:
|
|
prev_train = self.root / f"iter_{self.iter_id - 1:03d}" / "03.train" / "train.xyz"
|
|
if prev_train.exists():
|
|
sources.append(prev_train)
|
|
|
|
# 来源 2: 本轮新算的 SCF 数据
|
|
new_data = self.iter_dir / "02.scf" / "NEP-dataset.xyz"
|
|
if new_data.exists():
|
|
sources.append(new_data)
|
|
else:
|
|
raise FileNotFoundError("New training data (NEP-dataset.xyz) missing!")
|
|
|
|
# 执行合并
|
|
self.logger.info(f" -> Merging {len(sources)} datasets into train.xyz...")
|
|
with open(current_train, 'wb') as outfile:
|
|
for src in sources:
|
|
with open(src, 'rb') as infile:
|
|
shutil.copyfileobj(infile, outfile)
|
|
|
|
# ----------------------------------------
|
|
# 2. 准备 nep.in
|
|
# ----------------------------------------
|
|
self.copy_template("nep.in")
|
|
|
|
# ----------------------------------------
|
|
# 3. 运行训练 (调用 machine.yaml 里的 nep)
|
|
# ----------------------------------------
|
|
self.logger.info(" -> Running NEP training...")
|
|
self.runner.run("nep", cwd=self.work_dir)
|
|
|
|
self.check_done()
|
|
|
|
def check_done(self):
|
|
# 检查是否生成了 nep.txt
|
|
# 通常还会检查 loss.out 是否收敛,或者生成了 virials.out 等
|
|
if (self.work_dir / "nep.txt").exists():
|
|
self.logger.info("✅ Training finished.")
|
|
return True
|
|
raise RuntimeError("Training failed: nep.txt not generated") |