from search import PaperSearcher # Use local model (free) searcher = PaperSearcher('iclr2026_papers.json', model_type='local') # Or use OpenAI (better quality) # searcher = PaperSearcher('iclr2026_papers.json', model_type='openai') searcher.compute_embeddings() examples = [ { "title": "Improving Developer Emotion Classification via LLM-Based Augmentation", "abstract": "Detecting developer emotion in the informative data stream of technical commit messages..." }, ] results = searcher.search(examples=examples, top_k=100) searcher.display(results, n=10) searcher.save(results, 'results.json')