from pathlib import Path import numpy as np import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt from sklearn.manifold import TSNE from sklearn.decomposition import PCA def tsne_dir_shared_coords( dir_path: str, *, metric: str = "euclidean", # 可试 "cosine";想保留尺度差异用 "euclidean" perplexity: float = 50.0, # 30k~50k 样本建议 30~50 n_iter: int = 1000, early_exaggeration: float = 12.0, learning_rate = "auto", standardize: bool = False, pca_dim: int | None = None, # 先用 PCA 降到 pca_dim(如 20) 再跑 t-SNE,可提速 context: bool = True, make_joint: bool = True, init: str = "pca", random_state: int = 42 ) -> None: p = Path(dir_path) if not p.is_dir(): raise ValueError(f"{dir_path!r} 不是有效文件夹") files = sorted(p.glob("*.npy")) if not files: print(f"目录 {p} 中未找到 .npy 文件") return X_list, paths, counts = [], [], [] for f in files: try: data = np.load(f) if data.ndim != 2: print(f"[跳过] {f.name}: 期望二维数组,实际 shape={data.shape}") continue # 统一到 (n_samples, 30) if data.shape[1] == 30: X = data elif data.shape[0] == 30: X = data.T else: print(f"[跳过] {f.name}: shape={data.shape}, 未检测到 30 维特征") continue mask = np.isfinite(X).all(axis=1) if not np.all(mask): X = X[mask] print(f"[提示] {f.name}: 移除了含 NaN/Inf 的样本行") if X.shape[0] < 3: print(f"[跳过] {f.name}: 样本数过少(n={X.shape[0]})") continue X_list.append(X) paths.append(f) counts.append(X.shape[0]) except Exception as e: print(f"[错误] 读取 {f.name} 失败: {e}") if not X_list: print("未找到可用的数据文件") return X_all = np.vstack(X_list) if standardize: mean = X_all.mean(axis=0) std = X_all.std(axis=0); std[std == 0] = 1.0 X_all = (X_all - mean) / std if pca_dim is not None and pca_dim > 2: X_all = PCA(n_components=pca_dim, random_state=random_state).fit_transform(X_all) tsne = TSNE( n_components=2, metric=metric, perplexity=float(perplexity), early_exaggeration=float(early_exaggeration), learning_rate=learning_rate, init=init, random_state=random_state, method="barnes_hut", # 适合大样本 angle=0.5, verbose=0, ) Z_all = tsne.fit_transform(X_all) # 统一坐标轴范围 x_min, x_max = float(Z_all[:, 0].min()), float(Z_all[:, 0].max()) y_min, y_max = float(Z_all[:, 1].min()), float(Z_all[:, 1].max()) pad_x = 0.05 * (x_max - x_min) if x_max > x_min else 1.0 pad_y = 0.05 * (y_max - y_min) if y_max > y_min else 1.0 colors = [ "#1f77b4","#ff7f0e","#2ca02c","#d62728","#9467bd", "#8c564b","#e377c2","#7f7f7f","#bcbd22","#17becf" ] # 分文件出图 start = 0 for i, (f, n) in enumerate(zip(paths, counts)): Zi = Z_all[start:start + n]; start += n fig, ax = plt.subplots(figsize=(6, 5), dpi=150) if context: ax.scatter(Z_all[:, 0], Z_all[:, 1], s=5, c="#cccccc", alpha=0.35, edgecolors="none", label="All") ax.scatter(Zi[:, 0], Zi[:, 1], s=8, c=colors[i % len(colors)], alpha=0.9, edgecolors="none", label=f.name) ax.set_title(f"{f.name} • t-SNE(shared) (perp={perplexity}, metric={metric})", fontsize=9) ax.set_xlabel("t-SNE-1"); ax.set_ylabel("t-SNE-2") ax.set_xlim(x_min - pad_x, x_max + pad_x); ax.set_ylim(y_min - pad_y, y_max + pad_y) ax.grid(True, linestyle="--", linewidth=0.3, alpha=0.5) if context: ax.legend(loc="best", fontsize=8, frameon=False) fig.tight_layout() out_png = f.with_suffix("").as_posix() + "_tsne_shared.png" fig.savefig(out_png); plt.close(fig) print(f"[完成] {f.name} -> {out_png}") # 总览图 if make_joint: start = 0 fig, ax = plt.subplots(figsize=(7, 6), dpi=150) for i, (f, n) in enumerate(zip(paths, counts)): Zi = Z_all[start:start + n]; start += n ax.scatter(Zi[:, 0], Zi[:, 1], s=8, c=colors[i % len(colors)], alpha=0.85, edgecolors="none", label=f.name) ax.set_title(f"t-SNE(shared) overview (perp={perplexity}, metric={metric})", fontsize=10) ax.set_xlabel("t-SNE-1"); ax.set_ylabel("t-SNE-2") ax.set_xlim(x_min - pad_x, x_max + pad_x); ax.set_ylim(y_min - pad_y, y_max + pad_y) ax.grid(True, linestyle="--", linewidth=0.3, alpha=0.5) ax.legend(loc="best", fontsize=8, frameon=False) fig.tight_layout() out_png = Path(dir_path) / "tsne_shared_overview.png" fig.savefig(out_png.as_posix()); plt.close(fig) print(f"[完成] 总览 -> {out_png}") if __name__ == "__main__": tsne_dir_shared_coords("data")