一些小修改

This commit is contained in:
2025-11-19 12:23:17 +08:00
parent 95d719cc1e
commit 80ae03c8c1
25 changed files with 2291 additions and 17 deletions

140
GPUMD/t-SNE/t-SNE.py Normal file
View File

@@ -0,0 +1,140 @@
from pathlib import Path
import numpy as np
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
def tsne_dir_shared_coords(
dir_path: str,
*,
metric: str = "euclidean", # 可试 "cosine";想保留尺度差异用 "euclidean"
perplexity: float = 50.0, # 30k~50k 样本建议 30~50
n_iter: int = 1000,
early_exaggeration: float = 12.0,
learning_rate = "auto",
standardize: bool = False,
pca_dim: int | None = None, # 先用 PCA 降到 pca_dim(如 20) 再跑 t-SNE可提速
context: bool = True,
make_joint: bool = True,
init: str = "pca",
random_state: int = 42
) -> None:
p = Path(dir_path)
if not p.is_dir():
raise ValueError(f"{dir_path!r} 不是有效文件夹")
files = sorted(p.glob("*.npy"))
if not files:
print(f"目录 {p} 中未找到 .npy 文件")
return
X_list, paths, counts = [], [], []
for f in files:
try:
data = np.load(f)
if data.ndim != 2:
print(f"[跳过] {f.name}: 期望二维数组,实际 shape={data.shape}")
continue
# 统一到 (n_samples, 30)
if data.shape[1] == 30:
X = data
elif data.shape[0] == 30:
X = data.T
else:
print(f"[跳过] {f.name}: shape={data.shape}, 未检测到 30 维特征")
continue
mask = np.isfinite(X).all(axis=1)
if not np.all(mask):
X = X[mask]
print(f"[提示] {f.name}: 移除了含 NaN/Inf 的样本行")
if X.shape[0] < 3:
print(f"[跳过] {f.name}: 样本数过少(n={X.shape[0]})")
continue
X_list.append(X)
paths.append(f)
counts.append(X.shape[0])
except Exception as e:
print(f"[错误] 读取 {f.name} 失败: {e}")
if not X_list:
print("未找到可用的数据文件")
return
X_all = np.vstack(X_list)
if standardize:
mean = X_all.mean(axis=0)
std = X_all.std(axis=0); std[std == 0] = 1.0
X_all = (X_all - mean) / std
if pca_dim is not None and pca_dim > 2:
X_all = PCA(n_components=pca_dim, random_state=random_state).fit_transform(X_all)
tsne = TSNE(
n_components=2,
metric=metric,
perplexity=float(perplexity),
early_exaggeration=float(early_exaggeration),
learning_rate=learning_rate,
init=init,
random_state=random_state,
method="barnes_hut", # 适合大样本
angle=0.5,
verbose=0,
)
Z_all = tsne.fit_transform(X_all)
# 统一坐标轴范围
x_min, x_max = float(Z_all[:, 0].min()), float(Z_all[:, 0].max())
y_min, y_max = float(Z_all[:, 1].min()), float(Z_all[:, 1].max())
pad_x = 0.05 * (x_max - x_min) if x_max > x_min else 1.0
pad_y = 0.05 * (y_max - y_min) if y_max > y_min else 1.0
colors = [
"#1f77b4","#ff7f0e","#2ca02c","#d62728","#9467bd",
"#8c564b","#e377c2","#7f7f7f","#bcbd22","#17becf"
]
# 分文件出图
start = 0
for i, (f, n) in enumerate(zip(paths, counts)):
Zi = Z_all[start:start + n]; start += n
fig, ax = plt.subplots(figsize=(6, 5), dpi=150)
if context:
ax.scatter(Z_all[:, 0], Z_all[:, 1], s=5, c="#cccccc", alpha=0.35, edgecolors="none", label="All")
ax.scatter(Zi[:, 0], Zi[:, 1], s=8, c=colors[i % len(colors)], alpha=0.9, edgecolors="none", label=f.name)
ax.set_title(f"{f.name} • t-SNE(shared) (perp={perplexity}, metric={metric})", fontsize=9)
ax.set_xlabel("t-SNE-1"); ax.set_ylabel("t-SNE-2")
ax.set_xlim(x_min - pad_x, x_max + pad_x); ax.set_ylim(y_min - pad_y, y_max + pad_y)
ax.grid(True, linestyle="--", linewidth=0.3, alpha=0.5)
if context: ax.legend(loc="best", fontsize=8, frameon=False)
fig.tight_layout()
out_png = f.with_suffix("").as_posix() + "_tsne_shared.png"
fig.savefig(out_png); plt.close(fig)
print(f"[完成] {f.name} -> {out_png}")
# 总览图
if make_joint:
start = 0
fig, ax = plt.subplots(figsize=(7, 6), dpi=150)
for i, (f, n) in enumerate(zip(paths, counts)):
Zi = Z_all[start:start + n]; start += n
ax.scatter(Zi[:, 0], Zi[:, 1], s=8, c=colors[i % len(colors)], alpha=0.85, edgecolors="none", label=f.name)
ax.set_title(f"t-SNE(shared) overview (perp={perplexity}, metric={metric})", fontsize=10)
ax.set_xlabel("t-SNE-1"); ax.set_ylabel("t-SNE-2")
ax.set_xlim(x_min - pad_x, x_max + pad_x); ax.set_ylim(y_min - pad_y, y_max + pad_y)
ax.grid(True, linestyle="--", linewidth=0.3, alpha=0.5)
ax.legend(loc="best", fontsize=8, frameon=False)
fig.tight_layout()
out_png = Path(dir_path) / "tsne_shared_overview.png"
fig.savefig(out_png.as_posix()); plt.close(fig)
print(f"[完成] 总览 -> {out_png}")
if __name__ == "__main__":
tsne_dir_shared_coords("data")