CSM计算

This commit is contained in:
2025-09-22 11:18:39 +08:00
parent 71f6ae8928
commit 28c2323ce8
4 changed files with 307 additions and 34 deletions

View File

@@ -0,0 +1,134 @@
from pymatgen.core.structure import Structure
from pymatgen.analysis.local_env import VoronoiNN
import numpy as np
def check_real(nearest):
real_nearest = []
for site in nearest:
if np.all((site.frac_coords >= 0) & (site.frac_coords <= 1)):
real_nearest.append(site)
return real_nearest
def special_check_for_3(site, nearest):
real_nearest = []
distances = []
for site2 in nearest:
distance = np.linalg.norm(np.array(site.frac_coords) - np.array(site2.frac_coords))
distances.append(distance)
sorted_indices = np.argsort(distances)
for index in sorted_indices[:3]:
real_nearest.append(nearest[index])
return real_nearest
def CS_catulate(struct, sp='Li', anion=['O'], tol=0, cutoff=3.0,notice=False,ID=None):
"""
计算结构中目标元素与最近阴离子的共享关系。
参数:
struct (Structure): 输入结构。
sp (str): 目标元素符号,默认为 'Li'
anion (list): 阴离子列表,默认为 ['O']。
tol (float): VoronoiNN 的容差,默认为 0。
cutoff (float): VoronoiNN 的截断距离,默认为 3.0。
返回:
list: 包含每个目标位点及其最近阴离子索引的列表。
"""
# 初始化 VoronoiNN 对象
if sp=='Li':
tol = 0
cutoff = 3.0
voro_nn = VoronoiNN(tol=tol, cutoff=cutoff)
# 初始化字典,用于统计共享关系
shared_count = {"2": 0, "3": 0,"4":0,"5":0,"6":0}
# 存储结果的列表
atom_dice = []
# 遍历结构中的每个位点
for index,site in enumerate(struct.sites):
# 跳过阴离子位点
if site.specie.symbol in anion:
continue
# 跳过Li原子
if site.specie.symbol == sp:
continue
# 获取 Voronoi 多面体信息
voro_info = voro_nn.get_voronoi_polyhedra(struct, index)
# 找到最近的阴离子位点
nearest_anions = [
nn_info["site"] for nn_info in voro_info.values()
if nn_info["site"].specie.symbol in anion
]
# 如果没有找到最近的阴离子,跳过
if not nearest_anions:
print(f"No nearest anions found for {ID} site {index}.")
continue
if site.specie.symbol == 'B' or site.specie.symbol == 'N':
nearest_anions = special_check_for_3(site,nearest_anions)
nearest_anions = check_real(nearest_anions)
# 将结果添加到 atom_dice 列表中
atom_dice.append({
'index': index,
'nearest_index': [nn.index for nn in nearest_anions]
})
# 枚举 atom_dice 中的所有原子对
for i, atom_i in enumerate(atom_dice):
for j, atom_j in enumerate(atom_dice[i + 1:], start=i + 1):
# 获取两个原子的最近阴离子索引
nearest_i = set(atom_i['nearest_index'])
nearest_j = set(atom_j['nearest_index'])
# 比较最近阴离子的交集大小
shared_count_key = str(len(nearest_i & nearest_j))
# 更新字典中的计数
if shared_count_key in shared_count:
shared_count[shared_count_key] += 1
if notice:
if shared_count_key=='2':
print(f"{atom_j['index']}{atom_i['index']}之间存在共线")
print(f"共线的阴离子为{nearest_i & nearest_j}")
if shared_count_key=='3':
print(f"{atom_j['index']}{atom_i['index']}之间存在共面")
print(f"共面的阴离子为{nearest_i & nearest_j}")
# # 最后将字典中的值除以 2因为每个共享关系被计算了两次
# for key in shared_count.keys():
# shared_count[key] //= 2
return shared_count
def CS_count(struct, shared_count, sp='Li'):
count = 0
for site in struct.sites:
if site.specie.symbol == sp:
count += 1 # 累加符合条件的原子数量
CS_count = 0
for i in range(2, 7): # 遍历范围 [2, 3, 4, 5]
if str(i) in shared_count: # 检查键是否存在
CS_count += shared_count[str(i)] * i # 累加计算结果
if count > 0: # 防止除以零
CS_count /= count # 平均化结果
else:
CS_count = 0 # 如果 count 为 0直接返回 0
return CS_count
structure = Structure.from_file("data/CS_Table1/Li3Al(BO3)2_mp-6097_computed.cif")
a = CS_catulate(structure,notice=True)
b = CS_count(structure,a)
print(f"{a}\n{b}")