calc—_v1

This commit is contained in:
2025-12-07 15:22:36 +08:00
parent 35a4bf640f
commit b9da6d9592
6 changed files with 462 additions and 151 deletions

147
py/step2_4_combined.py Normal file
View File

@@ -0,0 +1,147 @@
import os
import pandas as pd
import math
# ================= 配置区域 =================
# 定义各阴离子的筛选阈值
# perc: Percolation diameter (对应 Step 2, 大于此值)
# min_d: Minimum of d (对应 Step 3, 小于此值)
# node: Maximum node length (对应 Step 4, 大于此值)
THRESHOLDS = {
"O": {"perc": 0.50, "min_d": 3.0, "node": 2.2},
"S": {"perc": 0.55, "min_d": 3.0, "node": 2.2},
"Cl": {"perc": 0.45, "min_d": 3.0, "node": 2.0},
"Br": {"perc": 0.45, "min_d": 3.0, "node": 2.0}
}
# 路径配置
CSV_ROOT_DIR = "../output" # CSV 所在的根目录
DATA_SOURCE_DIR = "../data/after_step1" # 原始 CIF 文件所在的根目录 (用于创建链接源)
TARGET_DIR = "../data/after_screening" # 筛选后放置软链接的目标目录
# ===========================================
def check_requirements(row, anion_type):
"""
检查单行数据是否符合要求
"""
# 获取该阴离子类型的阈值配置
config = THRESHOLDS.get(anion_type)
if not config:
print(f"Warning: 未知的阴离子类型 {anion_type},跳过筛选。")
return False
try:
# 获取数值 (处理可能的空值或非数字情况)
perc = float(row["Percolation Diameter (A)"])
min_d = float(row["Minimum of d"])
node = float(row["Maximum Node Length (A)"])
# 检查是否为 NaN
if math.isnan(perc) or math.isnan(min_d) or math.isnan(node):
return False
# --- 筛选逻辑 ---
# Step 2: 连通孔径 > 阈值
c1 = perc > config["perc"]
# Step 3: 最短距离 < 3.0 (所有元素目前都是3.0)
c2 = min_d < config["min_d"]
# Step 4: 扩大锂离子节点 > 阈值
c3 = node > config["node"]
return c1 and c2 and c3
except (ValueError, TypeError):
return False
def create_symlink(group_name, anion_name, material_id):
"""
创建软链接
源: ../data/after_step1/Group/Anion/ID/ID.cif
目: ../data/after_screening/Group/Anion/ID.cif
"""
# 1. 构建源文件路径 (必须使用绝对路径以确保软链接在任何地方都有效)
# 注意:根据你修改后的 step1文件在 ID 文件夹内,如 141/141.cif
rel_source_path = os.path.join(DATA_SOURCE_DIR, group_name, anion_name, material_id, f"{material_id}.cif")
abs_source_path = os.path.abspath(rel_source_path)
if not os.path.exists(abs_source_path):
print(f"源文件不存在: {abs_source_path}")
return
# 2. 构建目标文件夹路径
target_subdir = os.path.join(TARGET_DIR, group_name, anion_name)
if not os.path.exists(target_subdir):
os.makedirs(target_subdir)
# 3. 构建目标链接路径
target_link_path = os.path.join(target_subdir, f"{material_id}.cif")
# 4. 创建链接
try:
# 如果目标已经存在(可能是旧的链接),先删除
if os.path.exists(target_link_path) or os.path.islink(target_link_path):
os.remove(target_link_path)
os.symlink(abs_source_path, target_link_path)
# print(f"Link: {material_id} -> Passed")
except OSError as e:
print(f"创建软链接失败 {material_id}: {e}")
def process_all_csvs():
"""
遍历 output 文件夹下的所有 CSV 并处理
"""
if not os.path.exists(CSV_ROOT_DIR):
print(f"CSV 目录不存在: {CSV_ROOT_DIR}")
return
print("开始执行 Step 2-4 联合筛选...")
# 遍历 output 目录
# 结构预期: ../output/Group/Anion/Anion.csv (例如 ../output/O+S/O/O.csv 或 ../output/O/O.csv)
for root, dirs, files in os.walk(CSV_ROOT_DIR):
for file in files:
if file.endswith(".csv"):
csv_path = os.path.join(root, file)
# 推断 Group 和 Anion
# root 的末尾应该是 .../Group/Anion
# 例如 root = ../output/O+S/O
path_parts = os.path.normpath(root).split(os.sep)
# 倒数第一级是 Anion (O), 倒数第二级是 Group (O+S)
if len(path_parts) >= 2:
anion_name = path_parts[-1]
group_name = path_parts[-2]
else:
print(f"跳过路径结构异常的 CSV: {csv_path}")
continue
# 确保这是一个有效的阴离子类型
if anion_name not in THRESHOLDS:
continue
print(f"正在处理: Group={group_name}, Anion={anion_name} ({file})")
# 读取 CSV
df = pd.read_csv(csv_path)
pass_count = 0
total_count = len(df)
for index, row in df.iterrows():
material_id = str(row['Filename'])
if check_requirements(row, anion_name):
create_symlink(group_name, anion_name, material_id)
pass_count += 1
print(f" - 完成: {pass_count}/{total_count} 个材料通过筛选并建立链接。")
if __name__ == "__main__":
process_all_csvs()