67 lines
1.9 KiB
YAML
67 lines
1.9 KiB
YAML
# param.yaml
|
||
|
||
project: "LGPS"
|
||
|
||
# 1. 初始文件定义 (对应 data/ 目录)
|
||
files:
|
||
poscar: "POSCAR"
|
||
potcar: "POTCAR"
|
||
initial_pot: "nep89.txt" # 第一轮 MD 用的势函数
|
||
label: "Li Ge P S"
|
||
|
||
# 2. 迭代流程控制
|
||
iterations:
|
||
# --- 第一轮 ---
|
||
- id: 0
|
||
steps:
|
||
# Step 1: MD (预热 + 采样)
|
||
# 逻辑:会把 nep.txt (来自 initial_pot) 和 model.xyz 准备好
|
||
- name: "00.md"
|
||
sub_tasks:
|
||
# 你提到可能有预热,也可能有加工,这里支持串行执行
|
||
- template_sub: "preheat" # 使用 template/00.md/preheat/run.in
|
||
- template_sub: "production" # 使用 template/00.md/production/run.in
|
||
executor: "gpumd" # 对应 machine.yaml
|
||
|
||
# Step 2: 筛选
|
||
- name: "01.select"
|
||
method: "random"
|
||
params: [90, 120]
|
||
|
||
# Step 3: SCF (VASP)
|
||
# 逻辑:cp template/02.scf/INCAR; check KPOINTS; cp data/POTCAR
|
||
- name: "02.scf"
|
||
executor: "vasp_std" # 对应 machine.yaml (可能调用 vasp_std.sh)
|
||
|
||
# Step 4: 训练
|
||
# 逻辑:cp template/03.train/nep.in
|
||
- name: "03.train"
|
||
executor: "nep_local"
|
||
|
||
# --- 第二轮 ---
|
||
- id: 1
|
||
steps:
|
||
- name: "00.md"
|
||
sub_tasks:
|
||
- template_sub: "preheat"
|
||
- template_sub: "production" # 第二轮可能只需要 sampling
|
||
# 注意:这一轮的 nep.txt 会自动指向 iter_00/03.train/nep.txt
|
||
|
||
- name: "01.select"
|
||
method: "distance"
|
||
params: [0.01, 60, 90]
|
||
|
||
- name: "02.scf"
|
||
executor: "vasp_std"
|
||
|
||
- name: "03.train"
|
||
executor: "nep_local"
|
||
- name: "04.predict"
|
||
# 定义温度和时间列表
|
||
conditions:
|
||
- {T: 500, time: "1ns"}
|
||
- {T: 600, time: "1ns"} # 支持不同温度不同时长
|
||
- {T: 700, time: "1ns"}
|
||
- {T: 800, time: "1ns"}
|
||
- {T: 900, time: "1ns"} # 支持不同温度不同时长
|
||
- {T: 1000, time: "1ns"} |