nep框架重构

This commit is contained in:
2025-12-09 01:15:38 +08:00
parent 19a6924a41
commit 91bdb0dab1
30 changed files with 7930 additions and 1001 deletions

131
src/workflow.py Normal file
View File

@@ -0,0 +1,131 @@
# src/workflow.py
import os
import shutil
import logging
from src.utils import load_yaml
from src.machine import MachineManager
from src.steps import MDStep, SelectStep, SCFStep, TrainStep
class Workflow:
def __init__(self, root_dir):
self.root_dir = root_dir
# 1. 加载配置
self.param = load_yaml(os.path.join(root_dir, "config/param.yaml"))
# 2. 初始化机器管理器
self.machine = MachineManager(os.path.join(root_dir, "config/machine.yaml"))
# 3. 初始化路径变量
self.workspace = os.path.join(root_dir, "workspace")
self.data_dir = os.path.join(root_dir, "data")
self.template_dir = os.path.join(root_dir, "template")
self.logger = logging.getLogger()
# 状态追踪变量
self.current_nep_pot = os.path.join(self.data_dir, self.param['files']['initial_pot'])
# 假设第一轮之前的 train set 也是空的或者由用户提供,这里先指向一个基础文件
self.current_train_set = os.path.join(self.workspace, "accumulated_train.xyz")
def run(self):
self.logger.info(f"Workflow Started: {self.param['project']}")
# 遍历每一轮迭代
for iteration in self.param['iterations']:
iter_id = iteration['id']
iter_name = f"iter_{iter_id:02d}"
iter_path = os.path.join(self.workspace, iter_name)
self.logger.info(f"\n >>> Starting Iteration: {iter_id} <<<")
os.makedirs(iter_path, exist_ok=True)
# --- 执行该轮定义的各个 Step ---
for step_conf in iteration['steps']:
step_name = step_conf['name']
# ==========================
# Step: 00.md
# ==========================
if step_name == "00.md":
step_dir = os.path.join(iter_path, "00.md")
# 只有第一轮且有init需求时才进行 POSCAR -> model.xyz 转化
# 这里为了 Local 测试,我们简单处理:直接把 POSCAR 拷过去当 model.xyz (仅作演示)
# 实际上你应该调用 gpumdkit 转化
if iter_id == 0:
os.makedirs(step_dir, exist_ok=True)
shutil.copy(os.path.join(self.data_dir, self.param['files']['poscar']),
os.path.join(step_dir, "model.xyz"))
# 遍历子任务 (preheat, production...)
for sub in step_conf.get('sub_tasks', []):
template_sub_name = sub['template_sub']
sub_work_dir = os.path.join(step_dir, template_sub_name)
template_path = os.path.join(self.template_dir, "00.md", template_sub_name)
# 实例化并运行
md_task = MDStep(f"MD-{template_sub_name}", sub_work_dir, self.machine, self.config)
# 关键:要把上一级准备好的 model.xyz 拷进来
if iter_id == 0:
shutil.copy(os.path.join(step_dir, "model.xyz"), os.path.join(sub_work_dir, "model.xyz"))
# 如果是后续轮次,应该用上一轮选好的结构,这里暂略,先跑通第一轮
md_task.run(self.current_nep_pot, template_path)
# 记录最后生成的 dump.xyz 路径,供下一步使用
self.last_dump_path = os.path.join(sub_work_dir, "dump.xyz")
# ==========================
# Step: 01.select
# ==========================
elif step_name == "01.select":
step_dir = os.path.join(iter_path, "01.select")
select_task = SelectStep("Select", step_dir, self.machine, self.config)
# 使用上一步产生的 dump 和 当前的训练集/势函数
select_task.run(
dump_path=getattr(self, 'last_dump_path', None),
train_path=self.current_train_set,
nep_path=self.current_nep_pot,
method=step_conf.get('method'),
params=step_conf.get('params')
)
# ==========================
# Step: 02.scf
# ==========================
elif step_name == "02.scf":
step_dir = os.path.join(iter_path, "02.scf")
scf_task = SCFStep("SCF", step_dir, self.machine, self.config)
template_path = os.path.join(self.template_dir, "02.scf")
potcar_path = os.path.join(self.data_dir, self.param['files']['potcar'])
scf_task.run(template_path, potcar_path)
# 假装产生了一些新数据
self.new_data_chunk = os.path.join(step_dir, "scf_results.xyz")
# ==========================
# Step: 03.train
# ==========================
elif step_name == "03.train":
step_dir = os.path.join(iter_path, "03.train")
train_task = TrainStep("Train", step_dir, self.machine, self.config)
template_path = os.path.join(self.template_dir, "03.train")
# 实际逻辑应该是把 self.new_data_chunk 合并到 total_train.xyz
# 这里直接传入
train_task.run(template_path, getattr(self, 'new_data_chunk', None))
# 更新当前势函数路径,供下一轮使用
self.current_nep_pot = os.path.join(step_dir, "nep.txt")
self.logger.info("Workflow Finished Successfully.")
@property
def config(self):
return self.param # 简单透传