nep框架搭建

This commit is contained in:
2025-12-08 22:34:02 +08:00
parent cba2afb403
commit 19a6924a41
3 changed files with 246 additions and 115 deletions

View File

@@ -1,6 +1,7 @@
import shutil
import subprocess
import glob
from pathlib import Path
from ase.io import read, write
from nep_auto.modules.base_module import BaseModule
@@ -18,70 +19,145 @@ class SCFModule(BaseModule):
self.logger.info(f"⚛️ [SCF] Starting DFT Calculation Iter {self.iter_id}...")
self.initialize()
# 1. 读取 selected.xyz
selected_xyz = self.select_dir / "selected.xyz"
if not selected_xyz.exists():
raise FileNotFoundError("selected.xyz missing")
# ----------------------------------------
# 1. 准备数据: selected.xyz -> 301 切分
# ----------------------------------------
src_xyz = self.select_dir / "selected.xyz"
if not src_xyz.exists():
raise FileNotFoundError("selected.xyz missing from select module")
self.logger.info(" -> Reading structures using ASE...")
atoms_list = read(selected_xyz, index=':')
self.logger.info(f" -> Found {len(atoms_list)} structures.")
shutil.copy(src_xyz, self.work_dir / "selected.xyz")
# 2. 准备任务文件夹
task_dirs = []
for i, atoms in enumerate(atoms_list):
task_name = f"task.{i:03d}"
task_dir = self.work_dir / task_name
task_dir.mkdir(exist_ok=True)
task_dirs.append(task_dir)
# 调用 gpumdkit.sh (301 -> prefix)
# Prefix 使用 "task" 或者 "job",生成 job_1, job_2...
prefix = "task"
input_str = f"301\n{prefix}\n"
# 写 POSCAR
write(task_dir / "POSCAR", atoms, format='vasp')
gpumdkit_cmd = self.machine_config['tools']['gpumdkit']['command']
# 复制模版 INCAR, KPOINTS, POTCAR
self.copy_template("INCAR", target_name=None) # 复制到 self.work_dir
shutil.copy(self.work_dir / "INCAR", task_dir / "INCAR") # 再分发
self.copy_template("KPOINTS", target_name=None)
shutil.copy(self.work_dir / "KPOINTS", task_dir / "KPOINTS")
self.copy_template("POTCAR", target_name=None)
shutil.copy(self.work_dir / "POTCAR", task_dir / "POTCAR")
self.logger.info(" -> Splitting structures using gpumdkit...")
try:
subprocess.run(
gpumdkit_cmd,
input=input_str,
cwd=self.work_dir,
shell=True,
executable="/bin/bash",
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True,
check=True
)
except subprocess.CalledProcessError as e:
self.logger.error(f"gpumdkit splitting failed: {e.stderr}")
raise
# 3. 提交任务
# 这里区分 local 模式和 slurm 模式
# 既然你目前是 interactive gpu我们假设是串行或者简单的并行
# ----------------------------------------
# 2. 准备 DFT 输入文件 (fp 文件夹)
# ----------------------------------------
# gpumdkit 会生成一个 fp 文件夹,我们需要把模版放进去
fp_dir = self.work_dir / "fp"
if not fp_dir.exists():
# 某些版本的脚本可能不自动创建 fp手动建一个保险
fp_dir.mkdir(exist_ok=True)
self.logger.info(" -> preparing INCAR/KPOINTS/POTCAR...")
# 从 template/02_scf 复制到 02.scf/fp
self.copy_template("INCAR", target_name=None)
shutil.copy(self.work_dir / "INCAR", fp_dir / "INCAR")
self.copy_template("KPOINTS", target_name=None)
shutil.copy(self.work_dir / "KPOINTS", fp_dir / "KPOINTS")
self.copy_template("POTCAR", target_name=None)
shutil.copy(self.work_dir / "POTCAR", fp_dir / "POTCAR")
# ----------------------------------------
# 3. 分发文件并提交任务
# ----------------------------------------
# 找到所有生成的文件夹 (task_1, task_2...)
task_dirs = sorted(list(self.work_dir.glob(f"{prefix}_*")))
if not task_dirs:
raise RuntimeError(f"No {prefix}_* folders generated!")
self.logger.info(f" -> Found {len(task_dirs)} tasks. Distributing input files...")
# 将 fp 里的文件分发到每个 task 文件夹 (替代 presub.sh 的功能)
common_files = ["INCAR", "KPOINTS", "POTCAR"]
for t_dir in task_dirs:
if not t_dir.is_dir(): continue
for f in common_files:
shutil.copy(fp_dir / f, t_dir / f)
# 提交计算
self.logger.info(" -> Running VASP jobs...")
success_count = 0
for task_dir in task_dirs:
self.logger.info(f" -> Running {task_dir.name}...")
try:
# 调用 machine.yaml 里定义的 vasp
# 注意:如果 task 很多,这里最好写成多进程并发
self.runner.run("vasp", cwd=task_dir)
# 简单检查
if (task_dir / "OUTCAR").exists():
# 这里的并行策略取决于 machine.yaml
# 如果是 Interactive GPU我们通常是串行跑或者一次跑 N 个
# 这里先简单实现串行跑
for t_dir in task_dirs:
self.logger.info(f" -> Running {t_dir.name}...")
try:
# 调用 machine.yaml 里的 vasp 工具
self.runner.run("vasp", cwd=t_dir)
if (t_dir / "OUTCAR").exists(): # 简单判据
success_count += 1
except Exception as e:
self.logger.error(f"Task {task_dir.name} failed: {e}")
self.logger.error(f"Job {t_dir.name} failed: {e}")
self.logger.info(f" -> Finished. Success: {success_count}/{len(task_dirs)}")
# 4. 收集数据 (OUTCAR -> NEP-dataset.xyz)
self.logger.info(" -> Collecting data...")
valid_atoms = []
for task_dir in task_dirs:
try:
# 读取 OUTCAR
atoms = read(task_dir / "OUTCAR", format='vasp-outcar')
valid_atoms.append(atoms)
except:
# ----------------------------------------
# 4. 收集结果 (OUTCARs -> NEP-dataset.xyz)
# ----------------------------------------
# 使用 gpumdkit 104 功能: Format Conversion -> OUTCAR to xyz (需提供路径)
# 或者 108? 根据你的描述是 gpumdkit.sh -out2xyz .
self.logger.info(" -> Converting OUTCARs to NEP-dataset.xyz...")
# 方式 A: 命令行参数调用 (如果你确认支持)
# cmd = f"{gpumdkit_cmd} -out2xyz ."
# 方式 B: 交互式调用 (104/108) - 这里假设 -out2xyz 可用,这是最方便的
# 如果不支持,我们需要知道交互式的代码。根据你的描述 7: "-out2xyz ."
try:
# 尝试直接调用 -out2xyz
subprocess.run(
f"{gpumdkit_cmd} -out2xyz .",
cwd=self.work_dir,
shell=True,
executable="/bin/bash",
check=True
)
# gpumdkit 通常生成 model.xyz 或 out.xyz我们需要重命名为 NEP-dataset.xyz
# 假设生成的是 model.xyz
potential_outputs = ["model.xyz", "movie.xyz", "out.xyz"]
found = False
for f in potential_outputs:
if (self.work_dir / f).exists():
shutil.move(self.work_dir / f, self.work_dir / "NEP-dataset.xyz")
found = True
break
if not found and not (self.work_dir / "NEP-dataset.xyz").exists():
# 如果没找到,可能已经在子文件夹里?
pass
if valid_atoms:
write(self.work_dir / "NEP-dataset.xyz", valid_atoms, format='extxyz')
else:
raise RuntimeError("No valid OUTCARs found!")
except subprocess.CalledProcessError:
self.logger.warning("gpumdkit -out2xyz failed, falling back to ASE...")
# Fallback: 使用 ASE 收集 (更稳健)
from ase.io import read, write
all_atoms = []
for t_dir in task_dirs:
try:
all_atoms.append(read(t_dir / "OUTCAR", format="vasp-outcar"))
except:
pass
if all_atoms:
write(self.work_dir / "NEP-dataset.xyz", all_atoms, format="extxyz")
self.check_done()